Vislt

Current Targets

- Novel interface and easy communication between UV-CDAT and VisIt
- Provenance
- Provide Climate Science driven algorithms
 - Extreme Value Analysis
 - Peaks Over Threshold
 - Model-Based Clustering, ...
 - TECA
 - Extra Tropical Cyclone detection
 - Atmospheric River Detection,

Climate Science Core Needs

- Clean: customized embedded interface caters to climate science community.
- Scalable: Optimized analysis and visualization techniques.
- Diversifiable: Meet needs to varying capabilities and support of wide range of sources
 - R and Python scripting with MPI support.
- Customizable: Vary metrics of core algorithms within UV-CDAT/VisIt.
 - Visit_foreach_location, VisIt_foreach_time, VisIt_foreach_file, etc...

Addressing: Interface Needs

 Goal: Allow new UV-CDAT/VisIt capabilities to be intuitive and easy to use for the climate science community.

Integrated VisIt Client within UV-CDAT

UV-CDAT & Visit's Control network

Addressing: Interface Needs

- Loose integration with UV-CDAT
 - Rendering done within UV-CDAT, Computation done externally using local or remote resources.
- The PyQt infrastructure allows embedding, custom climate science interface, and seamless integration within UV-CDAT environment
- The Visit embedded client provides request and response capabilities.

Addressing: Computational Needs

• Goal: Provide ability to extend climate science algorithms as well as create brand new ones with support of well supported programming environments (Python/R).

Addressing: Computational Needs (1)

- Write Python or R code and embed it into VisIt's pipeline for extension of functionality.
- Invoke optimized VisIt templates that utilize user generated execution kernels. Templates proved I/O, spatial, temporal, and windowing support.
- Create a call graph that links several kernels together allowing for rich & complex operations.
- Support for MPI in R and Python allowing users to parallelize kernels. (capable of parallelizing cdms)

Computational Needs and Use Case

- Integrating TECA and R Code
- Parallelized and optimized for scalability and performance.

Scaling study

num CPUs		Annual Analysis	Monthly Analylsis
	1	600.53	7,904.97
	2	320.95	5,954.16
	4	181.40	4,948.32
	8	112.20	2,589.61
	16	67.49	2,121.38
	32	34.36	1,317.06
	64	19.51	673.61
	128	10.33	558.18
	256	5.99	576.66
	512	5.10	317.34
hold	1024	4.59	166.41

Peaks Over Threshold

Extreme Value Analysis

user: pugmire Mon Oct 22 13:23:34 2012

Use Case: Parallel Analysis of the Extremes

- Goal: Compute Extreme Daily Precipitation and Temperature.
 - Allow user to estimate the frequency and trends of extremes at many spatial locations.
 - Done in parallel within Visit's workflow. I/O and preprocessing in Visit
 and analysis in R. The results are displayed within UV-CDAT/Visit or
 written to a file.
- Impact: Ability to analyze extremes in climate model output.
 - Models produce data at many locations, over long periods of time, and often for multiple runs (ensembles)
 - Use of UV-CDAT/VisIt provides faster processing, analysis of ensembles, processing over large periods of time, and over many models.

Conclusion: Work allows analysts to understand how models characterize extremes, compare between different models, and evaluate results and performance metrics to observational data.

