Spatio-Temporal Data Processing and Visualization in Parallel Using UV-CDAT and ParaView

AMS 2013

Presented By Aashish Chaudhary R & D Engineer, Kitware Inc.

Overview

- Spatio-Temporal parallelism with ParaView in UV-CDAT
 - Demo movie
 - Demo details and workflow
 - Technical Details
 - Description
 - ParaView integration within UV-CDAT

Overview

ParaView

- \circ Introduction
- Sources
- o Filters
- Visualization
- Client-Server model
- o Python API
- MoleQueue

Demo

 Implements UV-CDAT use case I; High spatial resolution, parallel, image sequence production

ware

Spatio-Temporal Parallelism

Demo - Workflow

- User creates a visualization
- User then selects

 Input / Output location
 Input dataset
 Queue
- Users submits the job
- MoleQueue notifies the user when the job finishes
- User analyze the output

Performance Metrics

Compartment Size	Number of Processes	Time (seconds)
1	46	1090 ~ 18 mins
1	92	785
1	184	Did Not Complete
2	184	454
2	368	Did Not Complete
4	368	307
8	368	304 ~ 5 mins
16	368	345

- As measured on Jaguar supercomputer
- 363 files (each file is one timestamp)
- Using 23 nodes
- Each timestamp is about ~1.4 GB
- Each node has 32GB
- Each node has 16 cores and two processors

Demo - Tools

- Users pvserver (ParaView server)
- Uses pvbatch
 - Python interpreter
 - Command line executable specialized for batch processing
- Uses MoleQueue

ParaView – Integration

- Tight coupling
 - ParaView within VisTrails workflow
 - Provenance
 - Custom interface for Climate Scientists

ParaView – Integration

ParaView workflow

Visualization

Workflow

ParaView - Integration

Provenance

ParaView - Integration

- Supports CDMS variable
- Custom representations
 - Easy to create representations
 - Common base class
- ParaView pipeline helper
 Builds plot pipeline
 - Builds plot pipeline
 - Creates instances of ParaView VisTrails modules

ParaView - Integration

- PVGenericCell
 - Contains view and can handle multiple input representations
- New readers
 - Unstructured POP reader
 - MOC reader
- New filters

Project sphere filter

ParaView - Introduction

- An application and framework for the analysis and visualization of massive scientific datasets
- Provides
 - Application You don't have to write code to analyze data
 - Architecture Provides a framework to easily extend ParaView and is scalable

ParaView

 Global seismic wave propagation simulation

(Courtesy: Visualization at the Texas Advanced Computing Center, The University of Texas at Austin by Greg Abram)

Total perceptible water

(Courtesy: Argonne National Lab, Sandia National Lab)

ParaView - Community

Active community

Subscribers	Total	August 2012 Traffic
VTK users	3654	528
VTK developers	504	188
ParaView users	1098	296

Active Developers	Count
VTK	32
ParaView	11

Data Ingestion

Over 100 file formats supported

 Handles structured (uniform rectilinear, non-uniform rectilinear, and curvilinear grids), polygonal, unstructured, tabular, graph, multi-block, AMR and time varying data

ParaView - Pipeline

- User builds a pipeline for data processing and visualization
- Example pipeline

ParaView - Sources

Readers

NetCDF POP reader
POP unstructured reader
POP rectilinear reader

Generators

Cone source
Sphere source
Wavelet source

ParaView - Filters

- Slice
- Contour
- Clip
- Project Sphere

ParaView - Visualization

- Standalone

 For smaller datasets
- Parallel
 - For large datasets

ParaView – Client Server

- Data server
- Render server
- Allows ParaView clients to run on variety of platforms
 - Mobile phones
 - Supercomputers

ParaView - Python API

- Control over the entire pipeline, not just inside one filter
- Within or without GUI
 In GUI (Tools->Python Shell)
 - Script and GUI state are Synched
 - tab completion and help browsing

 Outside (pvpython, pvbatch, or standard python shell with paths)

ParaView - Python API

- Supports batch processing
- Syntax is fully described in online wiki, but trace is a best way to learn it
- Used in UV-CDAT

MoleQueue

- The MoleQueue application provides a graphical, standardized interface that bridges desktop applications with highperformance computing (HPC) resources.
- Support for Sun Grid Engine, Portable Batch System-base queuing systems and the local workstation.
- C++ and Python client libr

Team

Berk Geveci (PI)
Aashish Chaudhary
Andrew Bauer
Chris Harris
Dave DeMarle

